

49 CFR Parts 191, 192, and 195

Docket No. PHMSA-2020-0013; Amdt. Nos. 191-37, 192-156, 195-117

RIN 2137-AF48

Published Date: August 21, 2025

Effective Date: January 10, 2026

Provided for you by



## Periodic Standards Update II Redlines

### Final Rule

PHMSA is amending the Federal pipeline safety regulations to incorporate by reference all or parts of 19 updated industry standards. PHMSA is also clarifying certain regulatory provisions and making several editorial corrections.

***[NOTE –the publication in the Federal Register as provided by PHMSA listed no number 2, and two number 3's in the numbered amendments – and they did not provide a number 9 or number 10. We have followed their formatting so our redlines correlate accordingly.]***

# PART 191—TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE; ANNUAL, INCIDENT, AND OTHER REPORTING

## **1. The authority citation for part 191 continues to read as follows:**

**Authority:** 30 U.S.C. 185(w)(3), 49 U.S.C. 5121, 60101 et. seq., and 49 CFR 1.97.

## **3. In § 191.9, amend paragraph (a) by removing the text “RSPA” and adding, in its place, the text “PHMSA”.**

### **§ 191.9 Distribution system: Incident report.**

(a) Except as provided in paragraph (c) of this section, each operator of a distribution pipeline system shall submit Department of Transportation Form ~~RSPA~~PHMSA F 7100.1 as soon as practicable but not more than 30 days after detection of an incident required to be reported under § 191.5.

\* \* \* \* \*

## **3. In § 191.22, amend paragraph (c)(1)(i) by removing the words “Construction of any planned rehabilitation” and adding, in their place, the words “Construction or any planned rehabilitation”.**

### **§ 191.22 National Registry of Operators.**

\* \* \* \* \*

(c) \* \* \*

(1) An operator must notify PHMSA of any of the following events not later than 60 days before the event occurs:

(i) Construction ~~or~~f any planned rehabilitation, replacement, modification, upgrade, uprate, or update of a facility, other than a section of line pipe, that costs \$10 million or more. If 60-day notice is not feasible because of an emergency, an operator must notify PHMSA as soon as practicable;

\* \* \* \* \*

# PART 192—TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS

## **4. The authority citation for part 192 continues to read as follows:**

**Authority:** 30 U.S.C. 185(w)(3), 49 U.S.C. 5103, 60101 et. seq., and 49 CFR 1.97.

**5. In § 192.3, in the definition for “Moderate consequence area”, amend paragraph (1)(ii) by removing the text “as defined in the Federal Highway Administration’s Highway Functional Classification Concepts, Criteria and Procedures, Section 3.1 (see: [https://www.fhwa.dot.gov/planning/processes/statewide/related/highway\\_functional\\_classifications/fcauab.pdf](https://www.fhwa.dot.gov/planning/processes/statewide/related/highway_functional_classifications/fcauab.pdf))” and adding, in its place, the text “(See appendix G to this part)”.**

### **§ 192.3 Definitions.**

\* \* \* \* \*

*Moderate consequence area* means:

(1) \* \* \*

\* \* \* \* \*

(ii) Any portion of the paved surface, including shoulders, of a designated interstate, other freeway, or expressway, as well as any other principal arterial roadway with 4 or more lanes, as defined in the Federal Highway Administration’s Highway Functional Classification Concepts, Criteria and Procedures, Section 3.1 (see: [https://www.fhwa.dot.gov/planning/processes/statewide/related/highway\\_functional\\_classifications/fcauab.pdf](https://www.fhwa.dot.gov/planning/processes/statewide/related/highway_functional_classifications/fcauab.pdf)) “(See appendix G to this part)”, and that does not meet the definition of high consequence area, as defined in § 192.903.

\* \* \* \* \*

## **6. Revise § 192.7 to read as follows:**

### **§ 192.7 What documents are incorporated by reference partly or wholly in this part?**

(a) Certain material is incorporated by reference into this part with the approval of the Director of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. All approved incorporation by reference (IHR) material (IBR) is available for inspection at the Pipeline and Hazardous Materials Safety Administration (PHMSA) and the National Archives and Records Administration (NARA). Contact PHMSA at: Office of Pipeline Safety, Pipeline and Hazardous Materials Safety Administration, 1200 New Jersey Avenue SE, Washington, DC 20590-202-366-4046; [www.phmsa.dot.gov/pipeline/regs](http://www.phmsa.dot.gov/pipeline/regs). For information on the availability of this material at NARA,

visit [www.archives.gov/federal-register/cfr/ibr-locations.html](http://www.archives.gov/federal-register/cfr/ibr-locations.html) or email [fr.inspection@nara.gov](mailto:fr.inspection@nara.gov). It is also available [The material may be obtained](#) from the sources in the following paragraphs of this section.

(b) American Petroleum Institute (API), 200 Massachusetts Avenue NW, Suite 1100, Washington, DC 20001-5571; phone: (202) 682-8000; website: [www.api.org/](http://www.api.org/).

(1) API Recommended Practice 5L1, "Recommended Practice for Railroad Transportation of Line Pipe," 7th edition, September 2009, (API RP 5L1), IBR approved for § 192.65(a).

(2) API Recommended Practice 5LT, "Recommended Practice for Truck Transportation of Line Pipe," First edition, March 2012, (API RP 5LT), IBR approved for § 192.65(c).

(3) API Recommended Practice 5LW, "Recommended Practice for Transportation of Line Pipe on Barges and Marine Vessels," 3rd edition, September 2009, (API RP 5LW), IBR approved for § 192.65(b).

(4) API Recommended Practice 80, "Guidelines for the Definition of Onshore Gas Gathering Lines," 1st edition, April 2000, (API RP 80), IBR approved for § 192.8(a).

(5) API Recommended Practice 1162, "Public Awareness Programs for Pipeline Operators," 1st edition, December 2003, (API RP 1162), IBR approved for § 192.616(a), (b), and (c).

(6) API Recommended Practice 1165, "Recommended Practice for Pipeline SCADA Displays," First edition, January 2007, (API RP 1165), IBR approved for § 192.631(c).

(7) API Specification 5L, Line Pipe, 46th edition, April 2018, including Errata 1 (May 2018), (API Spec 5L); IBR approved for §§ 192.55(e); 192.112(a), (b), (c), (d), and (e); 192.113; appendix B to part 192.

(8) API Specification 6D, Specification for ~~Pipeline and Piping~~ Valves, 25<sup>4</sup>th edition, ~~August 2014 November 1, 2021~~, including Errata [\(December 2021\)](#), [Errata 2 \(April 2022\)](#), [Errata 3 \(October 2023\)](#), [1 through 10 \(October 2014 through July 2021\)](#), Addendum 1 [\(March 2015 April 2023\)](#), and Addendum 2 [\(June 2016 September 2024\)](#), [and Addendum 3 \(March 2025\)](#), (API Spec 6D); IBR approved for § 192.145(a).

(9) API Standard 1104, Welding of Pipelines and Related Facilities, 21st edition, September 2013, including Errata 1 through 5 (April 2014 through September 2018), Addendum 1 (2014), and Addendum 2 (2016), (API Std 1104); IBR approved for §§ 192.225(a); 192.227(a); 192.229(b) and (c); 192.241(c); appendix B to part 192.

(10) API Recommended Practice 1170, "Design and Operation of Solution-mined Salt Caverns Used for Natural Gas Storage," ~~First 2nd~~ edition, [July 2015 November 2022](#) (API RP 1170), IBR approved for § 192.12(a).

(11) API Recommended Practice 1171, "Functional Integrity of Natural Gas Storage in Depleted Hydrocarbon Reservoirs and Aquifer Reservoirs," ~~First 2nd~~ edition, [September 2015 November 2022](#), [including Errata 1, September 2023](#) (API RP 1171), IBR approved for § 192.12(a), (b), and (d).

(12) API STANDARD 1163, "In-Line Inspection Systems Qualification," Second edition, April 2013, Reaffirmed August 2018, (API STD 1163), IBR approved for § 192.493.

(c) American Society of Mechanical Engineers (ASME), ~~Three~~Two Park Avenue, New York, NY 10016; phone: (800) 843-2763 ([U.S./Canada](#)); email: [CustomerCare@asme.org](mailto:CustomerCare@asme.org); website: [www.asme.org/](http://www.asme.org/).

(1) ASME/ANSI B16.1-2005, "Gray Iron Pipe Flanges and Flanged Fittings: (Classes 25, 125, and 250)," August 31, 2006, (ASME/ANSI B16.1); IBR approved for § 192.147(c).

(2) ASME/ANSI B16.5-2003, Pipe Flanges and Flanged Fittings, October 2004, (ASME/ANSI B16.5); IBR approved for §§ 192.147(a); 192.607(f).

(3) ASME B16.40-2019~~08~~, "Manually Operated Thermoplastic Gas Shutoffs and Valves in Gas Distribution Systems," ~~March 18, 2008, approved by ANSI~~issued February 11, 2019, (ASME B16.40-2008); IBR approved for ~~Item I~~, Appendix B to Part 192this part.

(4) ASME/ANSI B31G-1991 (Reaffirmed 2004), "Manual for Determining the Remaining Strength of Corroded Pipelines," 2004, (ASME/ANSI B31G); IBR approved for ~~§§ 192.485(c)~~; 192.632(a), 192.712(b), ~~and 192.933(a)~~.

(5) ASME B31.8-2018, Gas Transmission and Distribution Piping Systems, Issued November 20, 2018, (ASME B31.8); IBR approved for §§ 192.112(b); 192.619(a); ~~and 192.911(m)~~.

(6) ASME B31.8S-2018, Managing System Integrity of Gas Pipelines, Issued November 28, 2018, (ASME B31.8S); IBR approved for §§ 192.13(d); 192.714(c) and (d); ~~192.714(d)~~; 192.903 note to Potential impact radius; 192.907(b); 192.911 introductory text, (i), and (l); ~~and~~ 192.913(a) through (c); 192.917(a) through (e); 192.921(a); 192.923(b); 192.925(b); 192.933(c) and (d); 192.935(b); 192.937(c); 192.939(a); 192.945(a).

~~(7) [Reserved]~~

~~(7)~~ ASME B36.10M-2018, Welded and Seamless Wrought Steel Pipe, Issued October 12, 2018, (ASME B36.10M); IBR approved for § 192.279.

~~(8)~~ ASME Boiler & Pressure Vessel Code, Section VIII, Division 1 "Rules for Construction of Pressure Vessels," 2007 edition, July 1, 2007, (ASME BPVC, Section VIII, Division 1); IBR approved for §§ 192.153(a), (b), and (d); ~~and 192.165(b)~~.

~~(9)~~ ASME Boiler & Pressure Vessel Code, Section VIII, Division 2 "Alternate Rules, Rules for Construction of Pressure Vessels," 2007 edition, July 1, 2007, (ASME BPVC, Section VIII, Division 2); IBR approved for §§ 192.153(b), and (d); ~~and 192.165(b)~~.

~~(10)~~ ASME Boiler & Pressure Vessel Code, Section IX: "Qualification Standard for Welding and Brazing Procedures, Welders, Brazers, and Welding and Brazing Operators," 2007 edition, July 1, 2007, ASME BPVC, Section IX; IBR approved for §§ 192.225(a); 192.227(a); ~~and Item II~~, Appendix B to Part 192this part.

(d) American Society for Nondestructive Testing (ASNT), ~~P.O. Box 28518, 1711 Arlingate Lane~~[1201 Dublin Road, Suite #G04](https://www.asnt.org/), Columbus, OH ~~43228~~[43215](https://www.asnt.org/), phone: 800-222-2768, website: <https://www.asnt.org/>.

(1) ANSI/ASNT ILI-PQ-20~~17~~[05\(2010\)](#), “In-line Inspection Personnel Qualification and Certification,” ~~Reapproved October 11, 2010~~[2017 Edition, approved December 12, 2017](#), (ANSI/ASNT ILI-PQ); IBR approved for § 192.493.

(2) [Reserved]

(e) Association for Material Protection and Performance (AMPP), (formerly NACE, International), [1440 South Creek Drive, Houston, Texas 77084](#); phone: (281) 228-6223 or (800) 797-6223; website: [www.ampp.org/](http://www.ampp.org/).

(1) ANSI/NACE SP0502-2010, [Pipeline External Corrosion Direct Assessment Methodology](#), revised June 24, 2010, (NACE SP0502); IBR approved for §§ 192.319(f); 192.461(h); 192.620(d); 192.923(b); 192.925(b); 192.931(d); 192.935(b); 192.939(a).

(2) NACE SP0102-2017, [In-Line Inspection of Pipelines, March 10, 2017, \(NACE SP0102\)](#); IBR approved for §§ 192.150(a); 192.493.

(3) NACE SP0204-2008, [Standard Practice, “Stress Corrosion Cracking \(SCC\) Direct Assessment Methodology,” reaffirmed September 18, 2008, \(NACE SP0204\)](#); IBR approved for §§ 192.923(b); 192.929(b).

(4) NACE SP0206-2006, [Standard Practice, “Internal Corrosion Direct Assessment Methodology for Pipelines Carrying Normally Dry Natural Gas \(DG-ICDA\),” approved December 1, 2006, \(NACE SP0206\)](#), IBR approved for §§ 192.923(b); 192.927(b), (c).

(f) ASTM International ([ASTM](#)), 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428; phone: (610) 832-9585; ~~email: [service@astm.org](mailto:service@astm.org)~~; website: [www.astm.org](http://www.astm.org).

(1) ASTM A53/A53M-~~22~~[0](#), [Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless, approved July 1, 2022](#)~~0~~, (ASTM A53/A53M); IBR approved for § 192.113; appendix B to part 192.

(2) ASTM A106/A106M-19A, [Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service, approved November 1, 2019, \(ASTM A106/A106M\)](#); IBR approved for § 192.113; appendix B to part 192.

(3) ASTM A333/A333M-18, [Standard Specification for Seamless and Welded Steel Pipe for Low-Temperature Service and Other Applications with Required Notch Toughness, approved November 1, 2018, \(ASTM A333/A333M\)](#); IBR approved for § 192.113; appendix B to part 192.

(4) ASTM A372/A372M-~~20~~[e110](#), “[Standard Specification for Carbon and Alloy Steel forgings for Thin-Walled Pressure Vessels, approved October](#)~~March~~[1, 2020, \(ASTM A372/A372M\)](#)”; IBR approved for § 192.177(b).

(5) ASTM A381/A381M-23~~18~~, Standard Specification for Metal-Arc-Welded Carbon or High-Strength Low-Alloy Steel Pipe for Use with High-Pressure Transmission Systems, approved November 1, 2023~~18~~, (ASTM A381); IBR approved for § 192.113(a); appendix B to part 192.

(6) ASTM A578/A578M-17~~96~~ (reapproved 2001~~2023~~), "Standard Specification for Straight-Beam Ultrasonic Examination of Plain and Clad~~Rolled~~ Steel Plates for Special Applications," reapproved November 1, 2023, (ASTM A578/A578M); IBR approved for § 192.112(c).

(7) ASTM A671/A671M-20, Standard Specification for Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures, approved March 1, 2020, (ASTM A671/A671M); IBR approved for § 192.113(a); appendix B to part 192.

(8) ASTM A672/A672M-10~~9~~, "Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures," approved October~~November~~ 1, 2010~~09~~, (ASTM A672/A672M); IBR approved for § 192.113(a); and Item I, Appendix B to Part 192.

(9) ASTM A691/A691M-19, Standard Specification for Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High-Pressure Service at High Temperatures, approved November 1, 2019, (ASTM A691/A691M); IBR approved for § 192.113; appendix B to part 192.

(10) ~~ASTM D638-03, "Standard Test Method for Tensile Properties of Plastics," 2003, (ASTM D638)~~, IBR approved for § 192.283(a) and (b). [Reserved]

(11) ASTM D2513-18~~20~~, "Standard Specification for Polyethylene (PE) Gas Pressure Pipe, Tubing, and Fittings," approved August~~December~~ 1, 2020~~18~~, (ASTM D2513); IBR approved for Item I, Appendix B to this Part 192.

(12) ASTM D2517-00, "Standard Specification for Reinforced Epoxy Resin Gas Pressure Pipe and Fittings," (ASTM D 2517), IBR approved for §§ 192.191(a); 192.281(d); 192.283(a); and Item I, Appendix B to this Part 192.

(13) ASTM D2564-20~~12~~, "Standard Specification for Solvent Cements for Poly (Vinyl Chloride) (PVC) Plastic Piping Systems," approved August~~1, 2020~~12, (ASTM D2564-~~12~~); IBR approved for § 192.281(b) (2).

(14) ASTM F1055-98~~16~~(Reapproved 2006), "Standard Specification for Electrofusion Type Polyethylene Fittings for Outside Diameter Controlled Polyethylene and Crosslinked Polyethylene (PEX) Pipe and Tubing," approved March November 15, 2010, (ASTM F1055-98~~(2006)~~); IBR approved for § 192.283(a), Item I, Appendix B to this Part 192.

(15) ASTM F1924-19~~2~~, "Standard Specification for Plastic Mechanical Fittings for Use on Outside Diameter Controlled Polyethylene Gas Distribution Pipe and Tubing," approved April August 1, 2019~~2~~, (ASTM F1924-~~12~~); IBR approved for Item I, Appendix B to this Part 192.

(16) ASTM F1948-20~~12~~, "Standard Specification for Metallic Mechanical Fittings for Use on Outside Diameter Controlled Thermoplastic Gas Distribution Pipe and Tubing," approved April February 1, 2020~~12~~, (ASTM F1948-~~12~~), IBR approved for Item I, Appendix B to this Part 192.

(17) ASTM F1973-2113, "Standard Specification for Factory Assembled Anodeless Risers and Transition Fittings in Polyethylene (PE) and Polyamide 11 (PA11) and Polyamide 12 (PA12) Fuel Gas Distribution Systems," May November 1, 202113, (ASTM F1973-13), IBR approved for § 192.204(b); and Item I, Appendix B to this Part 192.

(18) ASTM F2145-243, "Standard Specification for Polyamide 11 (PA 11) and Polyamide 12 (PA12) Mechanical Fittings for Use on Outside Diameter Controlled Polyamide 11 and Polyamide 12 Pipe and Tubing," May February 1, 20243, (ASTM F2145-13), IBR approved for Item I, Appendix B to this Part 192.

(19) ASTM F-2600-09 (2023), "Standard Specification for Electrofusion Type Polyamide-11 Fittings for Outside Diameter Controlled Polyamide-11 Pipe and Tubing," reapproved April November 1, 202309, (ASTM F 2600-09), IBR approved for Item I, Appendix B to this Part 192.

(20) ASTM F2620-20ae219, "Standard Practice for Heat Fusion Joining of Polyethylene Pipe and Fittings," approved February December 1, 202019, (ASTM F2620), IBR approved for §§ 192.281(c); and 192.285(b).

(21) ASTM F2767-182 (2023), "Specification for Electrofusion Type Polyamide-12 Fittings for Outside Diameter Controlled Polyamide-12 Pipe and Tubing for Gas Distribution," Oct November 15, 202312, (ASTM F2767-12), IBR approved for Item I, Appendix B to this Part 192.

(22) ASTM F2785-2112, "Standard Specification for Polyamide 12 Gas Pressure Pipe, Tubing, and Fittings," approved Aug July 1, 202112, (ASTM F2785-12), IBR approved for Item I, Appendix B to this Part 192.

(23) ASTM F2817-130 (Reapproved 2023), "Standard Specification for Poly (Vinyl Chloride) (PVC) Gas Pressure Pipe and Fittings for Maintenance or Repair," approved Feb July 1, 202310, (ASTM F2817-10), IBR approved for Item I, Appendix B to this Part 192.

(24) ASTM F2945-12a-18 (Reapproved 2023), "Standard Specification for Polyamide 11 Gas Pressure Pipe, Tubing, and Fittings," approved Nov-ember 127, 202312, (ASTM F2945-12a), IBR approved for Item I, Appendix B to this Part 192.

(g) [Reserved]

(h) Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS), 127 Park St. NE, Vienna, VA 22180; phone: (703) 281-6613; email: [info@msshq.org](mailto:info@msshq.org); website: [www.mss-hq.org/](http://www.mss-hq.org/).

(1) ANSI/MSS SP-44-2019, Steel Pipeline Flanges, published April 2020, (MSS SP-44); IBR approved for § 192.147(a).

(2) [Reserved]

(i) NACE International (NACE), 1440 South Creek Drive, Houston, TX 77084; phone: 281-228-6223 or 800-797-6223, Web site: <http://www.nace.org/Publications/>.

(j) NACE Standard Practice 0102-2010, "In-Line Inspection of Pipelines," Revised 2010-03-13, (NACE SP0102), IBR approved for §§ 192.150(a) and 192.493.

(2) ~~NACE SP0204 2008, Standard Practice, "Stress Corrosion Cracking (SCC) Direct Assessment Methodology," reaffirmed September 18, 2008, (NACE SP0204); IBR approved for §§ 192.923(b); 192.929(b) introductory text, (b)(1) through (3), (b)(5) introductory text, and (b)(5)(i).~~

(3) ~~NACE SP0206 2006, Standard Practice, "Internal Corrosion Direct Assessment Methodology for Pipelines Carrying Normally Dry Natural Gas (DG ICDA)," approved December 1, 2006, (NACE SP0206); IBR approved for §§ 192.923(b); 192.927(b); (c) introductory text, and (c)(1) through (4).~~

(4) ~~ANSI/NACE SP0502 2010, Standard Practice, "Pipeline External Corrosion Direct Assessment Methodology," revised June 24, 2010, (NACE SP0502), IBR approved for §§ 192.319(f); 192.461(h); 192.923(b); 192.925(b); 192.931(d); 192.935(b); and 192.939(a).~~

(i) National Fire Protection Association (NFPA), 1 Batterymarch Park, Quincy, MA 02169; phone: (617) 800-984344-72753555; website: [www.nfpa.org/](http://www.nfpa.org/).

(1) NFPA-30 (2012), "Flammable and Combustible Liquids Code," 2021<sup>12</sup> E edition, ~~effective June 20~~ August 31, 2020<sup>11</sup>, ~~including Errata 30-12-1 (September 27, 2011) and Errata 30-12-2 (November 14, 2011),~~ (NFPA-30), IBR approved for § 192.735(b).

(2) NFPA 58, Liquefied Petroleum Gas Code, 2020 edition, effective August 25, 2019, (NFPA 58); IBR approved for § 192.11.

(3) NFPA 59, Utility LP-Gas Plant Code, 2018 edition, effective September 6, 2017, (NFPA 59); IBR approved for § 192.11.

(4) NFPA 70, National Electrical Code (NEC), 2017<sup>2023</sup> edition, effective ~~August~~ September 1<sup>24</sup>, 2022<sup>16</sup>, (NFPA 70); IBR approved for §§ 192.163(e); 192.189(c).

(j) Pipeline Research Council International, Inc. (PRCI), ~~c/o Technical Toolboxes, 3801 Kirby Drive, Suite 520, P.O. Box 980550, Houston, TX 77098~~ 15059 Conference Center Drive Suite 130, Chantilly, VA 20151; phone: 713-630-0505 (703) 205-1600; toll free: 866-866-6766, ~~W~~ web-site: <http://www.ttoolboxes.com/> [www.prci.org/](http://www.prci.org/). (Contract number PR-3-805.)

(1) AGA, Pipeline Research Committee Project, PR-3-805, "A Modified Criterion for Evaluating the Remaining Strength of Corroded Pipe," (December 22, 1989), (PRCI PR-3-805 (R-STRENG)), IBR approved for §§ 192.485(c); 192.632(a); 192.712(b); 192.933(a) and (d).

(2) [Reserved]

(k) Plastics Pipe Institute, Inc. (PPI), 105 Decker Court, Suite 825, Irving, TX 75062; phone: 469-499-1044, website: <http://www.plasticpipe.org/>.

(1) PPI TR-3/2012, ~~HDB/HDS/PDB/SDB/MRS/CRS~~, Policies, "Policies and Procedures for Developing Hydrostatic Design Basis (HDB), Hydrostatic Design Stresses (HDS), Pressure Design Basis (PDB), Strength Design Basis (SDB), Minimum

Required Strength (MRS) Ratings, and Categorized Required Strength (CRS) for Thermoplastic Piping Materials or Pipe,<sup>2</sup> ~~updated November 2012~~<sup>May 1, 2024</sup>, ~~(PPI TR-3/2012)~~; IBR approved for § 192.121(a).

(2) PPI TR-4, ~~HDB/HDS/SDB/MRS, Listed Materials~~,<sup>2</sup> PPI HSB Listing of Hydrostatic Design Basis (HDB), Hydrostatic Design Stress (HDS), Strength Design Basis (SDB), Pressure Design Basis (PDB) and Minimum Required Strength (MRS) Rating For Thermoplastic Piping Materials or Pipe,<sup>2</sup> updated ~~March, 2011~~<sup>May 1, 2024</sup>, ~~(PPI TR-4/2012)~~; IBR approved for § 192.121(b).

**7. Amend § 192.18 by revising paragraph (a)(2) to read as follows:**

**§ 192.18 How to notify PHMSA.**

(a) \* \* \*

\* \* \* \* \*

(2) Sending the notification by mail to ATTN: Information Resources Manager, ~~DOT/PHMSA/OPS, East Building, 2nd Floor, E22-321~~<sup>Office of Pipeline Safety, Pipeline and Hazardous Materials Safety Administration, PHF-30</sup>, 1200 New Jersey Ave~~ne~~<sup>ue</sup>, Washington, DC 20590.

\* \* \* \* \*

**8. In § 192.113, amend table 1 to paragraph (a) by removing the entry for “ASTM A672” and adding, in its place, the entry “ASTM A672/A672M” to read as follows:**

**§ 192.113 Longitudinal joint factor (E) for steel pipe.**

(a) The longitudinal joint factor to be used in the design formula in § 192.105 is determined in accordance with the table 1 to this paragraph (a):

Table 1 to Paragraph (a)

| Specification                                            | Pipe class                  | Longitudinal joint factor (E) |
|----------------------------------------------------------|-----------------------------|-------------------------------|
| ASTM A53/A53M (incorporated by reference, see § 192.7)   | Seamless                    | 1.00                          |
|                                                          | Electric resistance welded  | 1.00                          |
|                                                          | Furnace butt welded         | .60                           |
| ASTM A106/A106M (incorporated by reference, see § 192.7) | Seamless                    | 1.00                          |
| ASTM A333/A333M (incorporated by reference, see § 192.7) | Seamless                    | 1.00                          |
|                                                          | Electric resistance welded  | 1.00                          |
| ASTM A381 (incorporated by reference, see § 192.7)       | Double submerged arc welded | 1.00                          |
| ASTM A671/A671M (incorporated by reference, see § 192.7) | Electric-fusion-welded      | 1.00                          |

Table 1 to Paragraph (a)

| Specification                                                             | Pipe class                              | Longitudinal joint factor (E) |
|---------------------------------------------------------------------------|-----------------------------------------|-------------------------------|
| ASTM A672/ <a href="#">A672M</a> (incorporated by reference, see § 192.7) | Electric-fusion-welded                  | 1.00                          |
| ASTM A691/A691M (incorporated by reference, see § 192.7)                  | Electric-fusion-welded                  | 1.00                          |
| API Spec 5L (incorporated by reference, see § 192.7)                      | Seamless                                | 1.00                          |
|                                                                           | Electric resistance welded              | 1.00                          |
|                                                                           | Electric flash welded                   | 1.00                          |
|                                                                           | Submerged arc welded                    | 1.00                          |
|                                                                           | Furnace butt welded                     | .60                           |
| Other                                                                     | Pipe over 4 inches (102 millimeters)    | .80                           |
| Other                                                                     | Pipe 4 inches (102 millimeters) or less | .60                           |

\* \* \* \* \*

**11. In § 192.281:**

**a. Amend paragraph (b)(2) by removing the text “ASTM D2564-12” and adding, in its place, the text “ASTM D2564”; and**

**b. Amend paragraph (d)(1) by removing the text “ASTM D 2517” and adding, in its place, the text “ASTM D2517”.**

**§ 192.281 Plastic pipe.**

\* \* \* \* \*

(b) \* \* \*

\* \* \* \* \*

(2) The solvent cement must conform to ASTM D2564-~~12~~ for PVC (incorporated by reference, see § 192.7).

\* \* \* \* \*

(d) \* \* \*

(1) The adhesive must conform to ASTM D-2517 (incorporated by reference, see § 192.7).

\* \* \* \* \*

**12. In § 192.283:**

**a. Amend paragraph (a)(1)(ii) by removing the text “ASTM D2517-00” and adding, in its place, the text “ASTM D2517”; and**

**b. Amend paragraph (a)(1)(iii) by removing the text “ASTM F1055-98(2006)” and adding, in its place, the text “ASTM F1055”.**

**§ 192.283 Plastic pipe: Qualifying joining procedures.**

(a) \* \* \*

(1) \* \* \*

\* \* \* \* \*

(ii) In the case of thermosetting plastic pipe, paragraph 8.5 (Minimum Hydrostatic Burst Pressure) or paragraph 8.9 (Sustained Static Pressure Test) of ASTM D2517-~~00~~ (incorporated by reference, see § 192.7).

(iii) In the case of electrofusion fittings for polyethylene (PE) pipe and tubing, paragraph 9.1 (Minimum Hydraulic Burst Pressure Test), paragraph 9.2 (Sustained Pressure Test), paragraph 9.3 (Tensile Strength Test), or paragraph 9.4 (Joint Integrity Tests) of ASTM F1055-~~98(2006)~~ (incorporated by reference, see § 192.7).

\* \* \* \* \*

**13. In § 192.327, amend paragraph (g) by removing the text “§ 192.612(b)(3)” and adding, in its place, the text “§ 192.612(c)(3)”.**

**§ 192.327 Cover.**

\* \* \* \* \*

(g) All pipelines installed under water in the Gulf of America and its inlets, as defined in § 192.3, must be installed in accordance with § 192.612(c)(3).

**14. Amend § 192.493 by removing the text “ANSI/ASNT” and adding, in its place, the text “ASNT”.**

**§ 192.493 In-line inspection of pipelines.**

When conducting in-line inspections of pipelines required by this part, an operator must comply with API STD 1163, ~~ANSI/~~ASNT ILI-PQ, and NACE SP0102, (incorporated by reference, see § 192.7). Assessments may be conducted using tethered or remotely controlled tools, not explicitly discussed in NACE SP0102, provided they comply with those sections of NACE SP0102 that are applicable.

**15. Amend § 192.620 by revising paragraph (d)(7)(ii) to read as follows:**

\* \* \* \* \*

(d) \* \* \*

|                                                                                                                                  |                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>To address increased risk of a maximum allowable operating pressure based on higher stress levels in the following areas:</b> | <b>Take the following additional step:</b>                                                                                                                                                                                                                              |
| (1) * * *                                                                                                                        | * * *                                                                                                                                                                                                                                                                   |
| (7) Confirming external corrosion control through indirect assessment                                                            | * * *                                                                                                                                                                                                                                                                   |
|                                                                                                                                  | (ii) Remediate any construction damaged coating with a voltage drop classified as moderate or severe (IR drop greater than 35% for DCVG or 50 dB $\mu$ V for ACVG) under <u>Section 4 of NACE RP-0502-2002 SP0502</u> (incorporated by reference, see <u>§ 192.7</u> ). |

\* \* \* \* \*

**16. In appendix B to part 192:**

**a. Revise Section I;**

**b. Amend paragraph II.B by:**

**i. Removing the text “API Standard 1104” and adding, in its place, the text “API Std 1104”; and**

**ii. Removing the text “section IX of the ASME Boiler and Pressure Vessel Code (ibr, see 192.7)” and adding, in its place, the text “ASME BPVC, Section IX (incorporated by reference, see 192.7)”;** and

**c. Amend paragraph II.D by removing the text “API Specification 5L” and adding, in its place, the text “API Spec 5L”.**

**The revision reads as follows:**

**Appendix B to Part 192—Qualification of Pipe and Components**

**I. List of Specifications**

**A. Listed Pipe Specifications**

API Spec 5L, Steel pipe, “Line Pipe” (incorporated by reference, see § 192.7).

ASTM A53/A53M, Steel pipe, “Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless” (incorporated by reference, see § 192.7).

ASTM A106/A-106M, Steel pipe, “Standard Specification for Seamless Carbon Steel Pipe for High Temperature Service” (incorporated by reference, see § 192.7).

ASTM A333/A333M-~~Steel pipe~~ “Standard Specification for Seamless and Welded Steel Pipe for Low-Temperature Service and Other Applications with Required Notch Toughness” (incorporated by reference, see § 192.7).

ASTM A381-~~Steel pipe~~ “Standard Specification for Metal-Arc-Welded Carbon or High-Strength Low-alloy Steel Pipe for Use with High-Pressure Transmission Systems” (incorporated by reference, see § 192.7).

ASTM A671/A671M-~~Steel pipe~~ “Standard Specification for Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures” (incorporated by reference, see § 192.7).

ASTM A672/A672M-09-~~Steel pipe~~ “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures” (incorporated by reference, see § 192.7).

ASTM A691/A691M-09-~~Steel pipe~~ “Standard Specification for Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High-Pressure Service at High Temperatures” (incorporated by reference, see § 192.7).

ASTM D2513-Standard Specification for Polyethylene (PE) Gas Pressure Pipe, Tubing, and Fittings” (incorporated by reference, see § 192.7).

ASTM D 2517-00-~~Thermosetting plastic pipe and tubing~~ “Standard Specification for Reinforced Epoxy Resin Gas Pressure Pipe and Fittings” (incorporated by reference, see § 192.7).

ASTM F2785-12-Standard Specification for Polyamide 12 Gas Pressure Pipe, Tubing, and Fittings” (PA-12) (incorporated by reference, see § 192.7).

ASTM F2817-10-Standard Specification for Poly (Vinyl Chloride) (PVC) Gas Pressure Pipe and Fittings for Maintenance or Repair” (incorporated by reference, see § 192.7).

ASTM F2945-12a-Standard Specification for Polyamide 11 Gas Pressure Pipe, Tubing, and Fittings” (PA-11) (incorporated by reference, see § 192.7).

## **B. Other Listed Specifications for Components**

ASME B16.40-~~2008~~ “Manually Operated Thermoplastic Gas Shutoffs and Valves in Gas Distribution Systems” (incorporated by reference, see § 192.7).

ASTM D2513-Standard Specification for Polyethylene (PE) Gas Pressure Pipe, Tubing, and Fittings” (incorporated by reference, see § 192.7).

ASTM D 2517-~~00- Thermosetting plastic pipe and tubing~~ “Standard Specification for Reinforced Epoxy Resin Gas Pressure Pipe and Fittings” (incorporated by reference, see § 192.7).

~~ASTM F2785-12 “Standard Specification for Polyamide 12 Gas Pressure Pipe, Tubing, and Fittings” (PA-12) (incorporated by reference, see § 192.7).~~

~~ASTM F2945-12a "Standard Specification for Polyamide 11 Gas Pressure Pipe, Tubing, and Fittings" (PA 11) (incorporated by reference, see § 192.7).~~

ASTM F1055-~~98 (2006)~~<sup>12</sup> "Standard Specification for Electrofusion Type Polyethylene Fittings for Outside Diameter Controlled Polyethylene and Crosslinked Polyethylene (PEX) Pipe and Tubing" (incorporated by reference, see § 192.7).

ASTM F1924-~~12~~<sup>12</sup> "Standard Specification for Plastic Mechanical Fittings for Use on Outside Diameter Controlled Polyethylene Gas Distribution Pipe and Tubing" (incorporated by reference, see § 192.7).

ASTM F1948-~~12~~<sup>12</sup> "Standard Specification for Metallic Mechanical Fittings for Use on Outside Diameter Controlled Thermoplastic Gas Distribution Pipe and Tubing" (incorporated by reference, see § 192.7).

ASTM F1973-~~13~~<sup>13</sup> "Standard Specification for Factory Assembled Anodeless Risers and Transition Fittings in Polyethylene (PE) and Polyamide 11 (PA 11) and Polyamide 12 (PA 12) Fuel Gas Distribution Systems" (incorporated by reference, see § 192.7).

~~ASTM F 2600-09 "Standard Specification for Electrofusion Type Polyamide-11 Fittings for Outside Diameter Controlled Polyamide-11 Pipe and Tubing" (incorporated by reference, see § 192.7).~~

ASTM F2145-~~13~~<sup>12</sup> "Standard Specification for Polyamide 11 (PA 11) and Polyamide 12 (PA12) Mechanical Fittings for Use on Outside Diameter Controlled Polyamide 11 and Polyamide 12 Pipe and Tubing" (incorporated by reference, see § 192.7).

ASTM F2600, Standard Specification for Electrofusion Type Polyamide-11 Fittings for Outside Diameter Controlled Polyamide-11 Pipe and Tubing (incorporated by reference, see § 192.7).

ASTM F2767-~~12~~<sup>12</sup> "Specification for Electrofusion Type Polyamide-12 Fittings for Outside Diameter Controlled Polyamide-12 Pipe and Tubing for Gas Distribution" (incorporated by reference, see § 192.7).

ASTM F2785, Standard Specification for Polyamide 12 Gas Pressure Pipe, Tubing, and Fittings (incorporated by reference, see § 192.7).

ASTM F2817-~~10~~<sup>10</sup> "Standard Specification for Polyamide 11 (Vinyl Chloride) (PVC) Gas Pressure Pipe and Fittings for Maintenance or Repair" (incorporated by reference, see § 192.7).

ASTM F2945, Standard Specification for Polyamide 11 Gas Pressure Pipe, Tubing, and Fittings (incorporated by reference, see § 192.7).

**17. Add appendix G to part 192 to read as follows:**

Appendix G to Part 192—Guidance on Moderate Consequence Areas

I. List of Definitions

### A. Other Principal Arterials

These roadways serve major centers of metropolitan areas, provide a high degree of mobility, and can also provide mobility through rural areas. Unlike their access-controlled counterparts, these roadways can serve abutting land uses directly. Forms of access for other principal arterial roadways include driveways to specific parcels and at-grade intersections with other roadways. For the most part, roadways that fall into the top three functional classification categories (interstate, other freeways and expressways, and other principal arterials) provide similar service in both urban and rural areas. The primary difference is that multiple arterial routes usually serve a particular urban area, radiating out from the urban center to serve the surrounding region. In contrast, an expanse of a rural area of equal size would be served by a single arterial.

### B. Minor Arterials

Minor arterials provide service for trips of moderate length, serve geographic areas that are smaller than their higher-arterial counterparts, and offer connectivity to the higher-arterial system. In an urban context, they interconnect and augment the higher-arterial system, provide intra-community continuity, and may carry local bus routes. In rural settings, minor arterials should be identified and spaced at intervals that are consistent with population density so that all developed areas are within a reasonable distance of a higher-level Arterial. In addition, minor arterials in rural areas are typically designed to provide relatively high overall travel speeds, with minimum interference to through movement. The spacing of minor-arterial streets typically may vary from 1/8 - to 1/2 -mile in the central business district and between 2 and 3 miles in the suburban fringes. Normally, the spacing should not exceed 1 mile in fully developed areas.

### C. Major and Minor Collectors

Collectors serve a critical role in the roadway network by gathering traffic from local roads and funneling it into the arterial network. Within the context of functional classification, collectors are broken down into two categories: major collectors and minor collectors. Until recently, this division was considered only in the rural environment. Currently, all collectors, regardless of whether they are within a rural area or an urban area, may be sub-stratified into major and minor categories. The determination regarding whether a given collector is a major or minor collector is frequently one of the biggest challenges in functionally classifying a roadway network. In the rural environment, collectors generally serve primarily intra-county travel (rather than statewide) and constitute those routes on which, independent of traffic volume, predominant travel distances are shorter than on arterial routes. Consequently, more moderate speeds may be posted. The distinctions between major collectors and minor collectors are often subtle. In general, major-collector routes are longer in length, have lower connecting-driveway densities, have higher speed limits, are spaced at greater intervals, have higher annual average traffic volumes, and may have more travel lanes than their minor-collector counterparts. Careful consideration should be given to these factors when assigning a major or minor collector designation. In rural areas, annual average daily traffic and spacing may be the most significant designation factors. Since major collectors offer more mobility and minor collectors offer more access, it is beneficial to reexamine these two fundamental concepts of functional classification. Overall, the total mileage of major collectors is typically lower than the total mileage of minor collectors, while the total collector mileage is typically one-third of the local roadway network.

## PART 195—TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE

### **18. The authority citation for part 195 continues to read as follows:**

**Authority:** 30 U.S.C. 185(w)(3), 49 U.S.C. 5103, 60101 et seq., and 49 CFR 1.97.

### **19. Revise § 195.3 to read as follows:**

#### **§ 195.3 What documents are incorporated by reference partly or wholly in this part?**

(a) Certain material is incorporated by reference into this part with the approval of the Director of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. All approved incorporation by reference (IBR) material (IBR) is available for inspection at the Pipeline and Hazardous Materials Safety Administration (PHMSA) and ~~at~~ the National Archives and Records Administration (NARA). Contact PHMSA at: Office of Pipeline Safety, Pipeline and Hazardous Materials Safety Administration, 1200 New Jersey Avenue SE, Washington, DC 20590; (202) 366-4046; website: www.phmsa.dot.gov/pipeline/regs. For information on inspecting the availability of this material at NARA, visit www.archives.gov/federal-register/cfr/ibr-locations.html or email fr.inspection@nara.gov. ~~It is also available~~ The material may be obtained from the sources in the following paragraphs of this section.

(b) American Petroleum Institute (API), 200 Massachusetts Avenue NW, Suite 1100, Washington, DC 20001-5571; phone: (202) 682-8000; website: www.api.org/.

(1) API 510, Pressure Vessel Inspection Code: In-service Inspection, Rating, Repair, and Alteration, 10th Edition, May 2014, Including Addendum 1 (May 2017); IBR approved for §§ 195.205(b); 195.432(c).

(2) API Recommended Practice 5L1, “Recommended Practice for Railroad Transportation of Line Pipe,” 7th edition, September 2009, (API RP 5L1); ~~IBR~~ IBR approved for § 195.207(a).

(3) API Recommended Practice 5LT, “Recommended Practice for Truck Transportation of Line Pipe,” First edition, March 12, 2012, (API RP 5LT); ~~IBR~~ IBR approved for § 195.207(c).

(4) API Recommended Practice 5LW, “Recommended Practice Transportation of Line Pipe on Barges and Marine Vessels,” 3rd edition, September 2009, (API RP 5LW); ~~IBR~~ IBR approved for § 195.207(b).

(5) API Recommended Practice 651, Cathodic Protection of Aboveground Petroleum Storage Tanks, 4th edition, September 2014, (API RP 651); IBR approved for §§ 195.565; ~~and~~ 195.573(d).

(6) ~~ANSI~~/API Recommended Practice 652, “Linings of Aboveground Petroleum Storage Tank Bottoms,” ~~3rd~~ 5th edition, ~~October 2005~~ May 2020, (API RP 652); ~~IBR~~ IBR approved for § 195.579(d).

(76) API Recommended Practice 1130, “Computational Pipeline Monitoring for Liquids: Pipeline Segment,” 3rd edition, September 2007, (API RP 1130); IBR approved for §§ 195.134(c); and 195.444(c).

(87) API Recommended Practice 1162, “Public Awareness Programs for Pipeline Operators,” 1st edition, December 2003, (API RP 1162); IBR approved for § 195.440(a), (b), and (c).

(98) API Recommended Practice 1165, “Recommended Practice for Pipeline SCADA Displays,” First edition, January 2007, (API RP 1165); IBR approved for § 195.446(c).

(109) API Recommended Practice 1168, “Pipeline Control Room Management,” First edition, September 2008, (API RP 1168); IBR approved for § 195.446(c) and (f).

(110) API Recommended Practice 2003, “Protection against Ignitions Arising out of Static, Lightning, and Stray Currents,” 87th edition, January 2008September 2015, reaffirmed March 2020, (API RP 2003); IBR approved for § 195.405(a).

(124) API Recommended Practice 2026, “Safe Access/Egress Involving Floating Roofs of Storage Tanks in Petroleum Service,” 4th3rd edition, June 2017July 2022, (API RP 2026); IBR approved for § 195.405(b).

(132) API Specification 5L, Line Pipe, 46th edition, April 2018, including Errata 1 (May 2018), (API Spec 5L); IBR approved for § 195.106(b) and (e).

(143) API Specification Spec 6D, Specification for Pipeline and Piping Valves, 254th edition, August 2014November 1, 2021, including Errata 1 December 2021, Errata 2 (April 2022), Errata 3 (October 2023, through 10 (October 2014 through July 2021)), Addendum 1 (March 2015April 2023), and Addendum 2 (June 2016September 2024), and Addendum 3 (March 2025), (API Spec 6D); IBR approved for § 195.116(d).

(154) API Specification 12F, “Specification for Shop-Welded Tanks for Storage of Production Liquids,” 132th edition, October 2008January 2019, effective April 1, 2009, (API Spec 12F); IBR approved for §§ 195.132(b); 195.205(b); 195.264(b) and (e); 195.307(a); 195.565; 195.579(d).

(15) API Standard 510, “Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration,” 9th edition, June 2006, (API Std 510), IBR approved for §§ 195.205(b); 195.432(e).

(16) API Standard 620, Design and Construction of Large, Welded, Low-Pressure Storage Tanks, 12th edition, effective October 2013, including Addendum 1 (November 2014), Addendum 2 (April 2018, Addendum 3 (March 2021), Addendum 4 (February 2025), Errata 1 (March 2025), (API Std 620); IBR approved for §§ 195.132(b); 195.205(b); 195.264(b), and (e); 195.307(b); 195.565; 195.579(d).

(17) API Standard 650, Welded Tanks for Oil Storage, 13th edition, March 2020, including Errata 1 (January 2021), (API Std 650); IBR approved for §§ 195.132(b); 195.205(b); 195.264(b), (e); 195.307(c), (d); 195.565; 195.579(d).

(18) API Standard 653, “Tank Inspection, Repair, Alteration, and Reconstruction,” 3rd edition, December 2001, (including addendum 1 (September 2003), addendum 2 (November 2005), addendum 3 (February 2008), and errata (April 2008)), (API Std 653); IBR approved for §§ 195.205(b), 195.307(d), and 195.432(b).

(19) API Standard 1104, Welding of Pipelines and Related Facilities, 21st edition, September 2013, including Errata 1 through 5 (April 2014 through September 2018), Addendum 1 (July 2014), and Addendum 2 (May 2016), ([API Std 1104](#)); IBR approved for §§ 195.214(a); 195.222(a) and (b); 195.228(b).

(20) API Standard 1163, “In-Line Inspection Systems Qualification,” Second edition, April 2013, (API Std 1163); IBR approved for § 195.591.

(21) API Standard 2000, Venting Atmospheric and Low-pressure Storage Tanks, 7th Edition, March 2014, Reaffirmed April 2020, (API Std 2000); IBR approved for § 195.264(e).

(22) API Standard 2350, “Overfill Prevention for Storage Tanks in Petroleum Facilities,” 5th edition, September 2020, ([API Std 2350](#)); including Errata 1 (April 2021), ([API Std 2350](#)); IBR approved for § 195.428(c).

(23) API Standard 2510, “Design and Construction of LPG Installations,” 98th Edition, [2001 August 2020](#), (API Std 2510); IBR approved for §§ 195.132(b); 195.205(b); 195.264 (b) and (e); 195.307 (e); 195.428 (c); and 195.432 (c).

(c) The American Society of Mechanical Engineers (ASME), Two Park Avenue, New York, NY 10016; phone: (800) 843-2763 ([U.S./Canada](#)); website: <http://www.asme.org/>.

(1) ASME/ANSI B16.9-2007, “Factory-Made Wrought Butt welding Fittings,” December 7, 2007, (ASME/ANSI B16.9); IBR approved for § 195.118(a).

(2) ASME/ANSI B31G-1991 (Reaffirmed 2004), “Manual for Determining the Remaining Strength of Corroded Pipelines,” 2004, (ASME/ANSI B31G); IBR approved for §§ 195.452(h); 195.587; and 195.588(c).

(3) ASME B31.4-2019, Pipeline Transportation Systems for Liquids and Slurries: ASME Code for Pressure Piping, B31 Hydrocarbons and Other Liquids, [issued October 20, 2006 November 1, 2019](#), (ASME B31.4); IBR approved for § 195.110(a).

(4) ASME B31.8-2018, Gas Transmission and Distribution Piping Systems, Issued November 20, 2018, (ASME B31.8); IBR approved for §§ 195.5(a); 195.406(a).

(5) ASME Boiler & Pressure Vessel Code, Section VIII, Division 1, “Rules for Construction of Pressure Vessels,” 2007 edition, July 1, 2007, (ASME BPVC, Section VIII, Division 1); IBR approved for §§ 195.124; and 195.307(e).

(6) ASME Boiler & Pressure Vessel Code, Section VIII, Division 2, “Alternate Rules, Rules for Construction of Pressure Vessels,” 2007 edition, July 1, 2007, (ASME BPVC, Section VIII, Division 2); IBR approved for § 195.307(e).

(7) ASME Boiler & Pressure Vessel Code, Section IX: “Qualification Standard for Welding and Brazing Procedures, Welders, Brazers, and Welding and Brazing Operators,” 2007 edition, July 1, 2007, (ASME BPVC, Section IX); IBR approved for § 195.222(a).

(d) American Society for Nondestructive Testing (ASNT), P.O. Box 28518, 1711 Arlingate Lane 1201 Dublin Road, Suite #G04, Columbus, OH 43228-43215; website <https://asnt.org>.

(1) ANSI/ASNT ILI-PQ-20052017(2010), “In-line Inspection Personnel Qualification and Certification,” reapproved October 11, 20102017 Edition, approved December 12, 2017, (ANSI/ASNT ILI-PQ); IBR approved for § 195.591.

(2) [Reserved]

(e) ASTM International (ASTM), 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 119428; phone: (610) 832-9585; email: [service@astm.org](mailto:service@astm.org); website: <http://www.astm.org/>.

(1) ASTM A53/A53M-20, Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless, approved July 1, 2020, (ASTM A53/A53M); IBR approved for § 195.106(e).

(2) ASTM A106/A106M-19A, Standard Specification for Seamless Carbon-Steel Pipe for High-Temperature Service, approved November 1, 2019, (ASTM A106/A106M); IBR approved for § 195.106(e).

(3) ASTM A333/A333M-18, Standard Specification for Seamless and Welded Steel Pipe for Low-Temperature Service and Other Applications with Required Notch-Toughness, approved November 1, 2018, (ASTM A333/A333M); IBR approved for § 195.106(e).

(4) ASTM A381/A381M-18, Standard Specification for Metal-Arc-Welded Carbon or High-Strength Low-Alloy Steel Pipe for Use with High-Pressure Transmission Systems, approved November 1, 2018, (ASTM A381); IBR approved for § 195.106(e).

(5) ASTM A671/A671M-20, Standard Specification for Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures, approved March 1, 2020, (ASTM A671/A671M); IBR approved for § 195.106(e).

(6) ASTM A672/A672M-09, Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures, approved October 1, 2009, (ASTM A672/A672M); IBR approved for § 195.106(e).

(7) ASTM A691/A691M-19, Standard Specification for Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High-Pressure Service at High Temperatures, approved November 1, 2019, (ASTM A691/A691M); IBR approved for § 195.106(e).

(f) Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS), 127 Park St. NE, Vienna, VA 22180; phone: (703) 281-6613; website: [www.mss-hq.org/](http://www.mss-hq.org/).

~~(1) MSS SP 75-2019 Standard Practice, High-Strength, Wrought, Butt Welding Fittings, published December 2019, (MSS SP 75); IBR approved for § 195.118(a).~~

~~(2) [Reserved]~~

~~(e) Association for Materials Protection and Performance (AMPP), 15835 Park Ten Place 1440 South Creek Drive, Houston, TX 77084; phone: (281) 228-6223 or (800) 797-6223; website: <https://ampp.org/standards> [www.ampp.org/](http://www.ampp.org/).~~

~~(1) NACE SP0169-2007, Standard Practice, "Control of External Corrosion on Underground or Submerged Metallic Piping Systems" reaffirmed March 15, 2007, (NACE SP0169), IBR approved for §§ 195.571 and 195.573(a).~~

~~(2) ANSI/NACE SP0502-2010, Standard Practice, "Pipeline External Corrosion Direct Assessment Methodology," June 24, 2010, (NACE SP0502), IBR approved for § 195.588(b).~~

~~(3) NACE SP0102-2017, "Standard Practice, Inline Inspection of Pipelines", revised March 10, 2017, (NACE SP0102); IBR approved for §§ 195.120(a); and 195.591.~~

~~(2) NACE SP0169-2007, Standard Practice, Control of External Corrosion on Underground or Submerged Metallic Piping Systems, reaffirmed March 15, 2007, (NACE SP0169), IBR approved for §§ 195.571; 195.573(a).~~

~~(3) NACE SP0204-2015, Stress Corrosion Cracking (SSC) Direct Assessment Methodology, Revised March 14, 2015, (NACE SP0204); IBR approved for § 195.588(c).~~

~~(4) ANSI/NACE SP0502-2010, Pipeline External Corrosion Direct Assessment Methodology, revised June 24, 2010, (NACE SP0502); IBR approved for § 195.588(b).~~

~~(f) ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428; phone: (610) 832-9585; website: [www.astm.org/](http://www.astm.org/).~~

~~(1) ASTM A53/A53M-22, Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless, approved July 1, 2022, (ASTM A53/A53M); IBR approved for § 195.106(e).~~

~~(2) ASTM A106/A106M-19A, Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service, approved November 1, 2019, (ASTM A106/A106M); IBR approved for § 195.106(e).~~

~~(3) ASTM A333/A333M-18, Standard Specification for Seamless and Welded Steel Pipe for Low-Temperature Service and Other Applications with Required Notch Toughness, approved November 1, 2018, (ASTM A333/A333M); IBR approved for § 195.106(e).~~

~~(4) ASTM A381/A381M-23, Standard Specification for Metal-Arc-Welded Carbon or High-Strength Low-alloy Steel Pipe for Use With High-Pressure Transmission Systems, approved November 1, 2023, (ASTM A381/A381M); IBR approved for § 195.106(e).~~

(5) ASTM A671/A671M-20, Standard Specification for Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures, approved March 1, 2020, (ASTM A671/A671M); IBR approved for § 195.106(e).

(6) ASTM A672/A672M-19, Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures, approved November 1, 2019, (ASTM A672/A672M); IBR approved for § 195.106(e).

(7) ASTM A691/A691M-19, Standard Specification for Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High-Pressure Service at High Temperatures, approved November 1, 2019, (ASTM A691/A691M); IBR approved for § 195.106(e).

(g) Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS), 127 Park St. NE, Vienna, VA 22180; phone: (703) 281-6613; website: [www.mss-hq.org/](http://www.mss-hq.org/).

(1) MSS SP-75-2019 Standard Practice, High-Strength, Wrought, Butt-Welding Fittings, published December 2019, (MSS SP-75); IBR approved for § 195.118(a).

(2) [Reserved]

(h) National Fire Protection Association (NFPA), 1 Batterymarch Park, Quincy, MA 02169; phone: ~~617-984-7275~~(800) 344-3555; <sup>2</sup>Web-site: <http://www.nfpa.org/>.

(1) NFPA-30 (2012), “Flammable and Combustible Liquids Code,” ~~including Errata 30-12-1 (9/27/11), and Errata 30-12-2 (11/14/11), 2012~~ 2021 Edition, ~~copyright 2011~~ effective August 31, 2020; (NFPA-30); IBR approved for § 195.264(b).

(2) [Reserved]

(i) Pipeline Research Council International, Inc. (PRCI), ~~c/o Technical Toolboxes, 3801 Kirby Drive, Suite 520, P.O. Box 980550, Houston, TX 77098~~ 15059 Conference Center Drive, Suite 130, Chantilly, VA 20151, phone: ~~713-630-0505~~(703) 205-1600, toll free: 866-866-6766; <sup>2</sup>Web-site: <http://www.ttoolboxes.com/> [www.prci.org/](http://www.prci.org/).

(1) AGA Pipeline Research Committee, Project PR-3-805, “A Modified Criterion for Evaluating the Remaining Strength of Corroded Pipe,” December 22, 1989, (PR-3-805 (RSTRENGTH)); IBR approved for §§ 195.452(h); 195.587; and 195.588(c).

(2) [Reserved]

**20. Amend § 195.54 by removing the text “on DOT Form 7000-1” wherever it appears and adding, in its place, the text “on DOT Form 7000-1 or 7000-2, whichever is applicable”.**

#### **§ 195.54 Accident reports.**

(a) Each operator that experiences an accident that is required to be reported under § 195.50 must, as soon as practicable, but not later than 30 days after discovery of the accident, file an accident report on DOT Form 7000-1 or 7000-2, whichever is applicable.

(b) Whenever an operator receives any changes in the information reported or additions to the original report on DOT Form 7000-1 or 7000-2, whichever is applicable, it shall file a supplemental report within 30 days.

**21. Amend § 195.110 by revising paragraph (a) to read as follows:**

**§ 195.110 External loads.**

(a) Anticipated external loads (e.g., earthquakes, vibration, thermal expansion, and contraction) must be provided for in a pipeline system's designing a pipeline system. In providing Sections 401, 402, 403.3, and 403.9 of ASME B31.4 (incorporated by reference, see § 195.3) must be followed to provide for expansion and flexibility, ~~section 419 of ASME B31.4 must be followed~~.

\* \* \* \* \*

**22. In § 195.264, amend paragraph (b)(1) introductory text by removing the text “NFPA-30” and adding, in its place, the text “NFPA 30”.**

**§ 195.264 Impoundment, protection against entry, normal/emergency venting or pressure/vacuum relief for aboveground breakout tanks.**

\* \* \* \* \*

(b) \* \* \*

(1) For tanks built to API Spec 12F, API Std 620, and others (such as API Std 650 (or its predecessor Standard 12C)), the installation of impoundment must be in accordance with the following sections of NFPA-30 (incorporated by reference, see § 195.3);

\* \* \* \* \*

**23. In § 195.307:**

- a. Amend paragraph (a) by removing the text “12 F” and adding, in its place, the text “12F”;**
- b. Amend paragraph (d) by removing the text “12 C” and adding, in its place, the text “12C”; and**
- c. Revise paragraph (e).**

**§ 195.307 Pressure testing aboveground breakout tanks.**

(a) For aboveground breakout tanks built to API Spec 12F (incorporated by reference, see § 195.3) and first placed in service after October 2, 2000, pneumatic testing must be performed in accordance with section 5.3 of API Spec 12-F.

\* \* \* \* \*

(d) For aboveground atmospheric pressure breakout tanks constructed of carbon and low alloy steel, welded or riveted, and non-refrigerated tanks built to API Std 650 or its predecessor Standard 12-C that are returned to service after October 2, 2000, the necessity for the hydrostatic testing of repair, alteration, and reconstruction is covered in section 12.3 of API Std 653 (incorporated by reference, see § 195.3).

(e) For aboveground breakout tanks built to API Std 2510 (incorporated by reference elsewhere in this part, see § 195.3) and first placed in service after October 2, 2000, pressure testing must be performed in accordance with ~~2007~~ ASME ~~Boiler and Pressure Vessel Code (BPVC)~~ (Section VIII, Division 1 ~~or 2~~) and ASME BPVC, Section VIII, Division 2 (both incorporated by reference, see § 195.3).